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The Margrabe Best-of-two strategy:  

A sweet spot between equity upside 

potential and resilience to equity 

downturns    
  



 

Executive Summary 

Medium to long-term investors are faced with the cyclical behavior of equity 

markets. Portfolio protection techniques help the investor to achieve a stable 

performance that on the medium to long run is similar to the equity market 

performance, but avoid the large drawdowns by timely shifting to a low risk 

asset.  

The Margrabe Best-of-two portfolio allocation offers such portfolio protection. 

When applied to equities and bonds, it invests, at the year-turn, equally in 

equities and bonds. It then uses option-based theories to progressively invest 

more in the best performing asset. Thanks to the underlying option theory, its 

performance benefits from the upside potential of investing in the best 

performing asset, and the downside protection of holding a substantial portion 

of the portfolio invested in bonds. It is fully rule-based and thus excludes 

behavioral biases. 

To illustrate the effectiveness of the Margrabe Best-of-two strategy, let us 

consider the case of investing in a European equity and bond index from Feb-

2007 to Feb-2017. For the bond index, we take the Merrill Lynch European 

Government bond index. As equity index, we compare the results for the Finvex 

Sustainable & Efficient Europe equity index (FSEE) with the traditional Dow 

Jones Sustainability Europe index (DJSE). All of them are total return indices, in 

EUR. The two equity indices track the performance of sustainable EU stocks. 

The main difference between the DJSE and the Finvex Sustainable & Efficient 

Europe index is that the DJSE is a not optimized (it uses market capitalization 

weighting), while the Finvex index does thorough screening to invest only in 

low risk stocks.  

  



 

Performance Equity indices 
 

Bond index 
 

Margrabe Best-of-two 

  DJSE Finvex   
 

  DJSE+Bond Finvex+Bond 

Cumulative value (€1) 1.27 2.17   1.63   1.76 2.30 

Annualized return (%) 2.43 7.98   4.94   5.75 8.61 

Annualized volatility (%) 15.65 12.12   4.44   8.21 7.97 

Sharpe ratio 0.16 0.66   1.11   0.70 1.08 

Maximum drawdown (%) 55.84 39.38   5.76   11.89 11.16 

95% Modified VaR (%) 7.43 5.43   1.71   3.54 3.07 

Note: DJSE: Dow Jones Sustainability Europe Index; Finvex: Finvex Sustainable & Efficient Europe.  

 

This difference in market capitalization versus low risk weighting has material 

effects in terms of performance on the decade of returns analyzed. Over the 

period 2007-2017, the Finvex equity index outperforms the DJSE index in all 

dimensions: a higher annualized return (7.98% vs 2.43%), a lower volatility (12% 

versus 16%), and a lower 95% VaR (5.43% against 7.43%). 

The Finvex equity index also has a higher resilience to market downturns. Its 

maximum drawdown is 40%, compared to the 56% of the DJSE. Such a level of 

drawdown is inherent to a pure equities investment product. A capital 

protection overlay to the Finvex equity index reduces further the drawdown. 

In the right panel of the performance table above we investigate the use of the 

Margrabe Best-of-two strategy, which uses option-based theories to optimally 

allocate between equities and bonds. We find that the dynamic allocation using 

the Margrabe strategy leads to a drawdown of only 11%, while average 

performance when implemented with the Finvex equity index is still excellent: 

8.61% annualized return and a volatility of 8%.   

The gain in stability in performance becomes even more clear when considering 

the cumulative performance charts. The Magrabe Best-of-two strategy avoids 

the large equity drawdowns of the financial crisis, and, compared to the bond 

index, benefits from the high upside potential of investing in the Finvex 

Sustainable & Efficient Europe equity index. 

 
  



 

 
Over the past months, researchers at the Finvex Quantitative Strategies team 

have investigated in detail the sources of performance. They appreciate in 

particular the elegance of the underlying option-based theories in combining 

relative performance, volatility and correlation when constructing the 

optimized portfolio with a stable performance profile. Their results are in the 

attached research paper. 

I wish you a pleasant read and please don’t hesitate to contact us for any 

further inquiries on designing tailor-made asset allocation strategies.   

Kind regards, 

 

Stefan Hartmann, 

Head of Quantitative Research, Finvex  
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Abstract

The Margrabe Best–of–two (MBo2) strategy is a rule–based dynamic investment solution for the two–asset
allocation problem. Its typical implementation involves yearly rebalancing the portfolio weights to 50–50
between a high–risk and low–risk asset. It uses intra–year weight adjustments to chase the momentum of
the best performing asset by replicating the value of a Margrabe option to exchange an asset for another
asset. In practice, this means that the Margrabe portfolio allocation benefits from the upside potential of
the high–risk asset and the downside protection from the low–risk asset. The MBo2 allocation depends on
the assets’ prices, their return volatilities and correlation, as well as the remaining time until year–end. In
this paper, we derive analytical formulae and use simulations to provide insights on the sensitivity of the
strategy’s weights and performance to these input parameters. We also report the results of an extensive
out–of–sample evaluation for the bond–equity investment problem.

Keywords: Best–of–two, Bond–equity, Margrabe, Tactical asset allocation, Upside potential, Downside
protection.

IFinancial support from the Doctiris program of Innoviris is gratefully acknowledged. We are also grateful to Samir El Abbouni
for his assistance, and to Diethelm Würtz for recommending this research problem to us. We thank Maxime de Bellefroid, William
Doehler, Robin Mourembles, and Jiang Ye for their helpful comments.
∗Corresponding author
Email addresses: david.ardia@unine.ch (David Ardia), kris.boudt@vub.be (Kris Boudt),

stefan.hartmann@finvex.com (Stefan Hartmann), ha.giang.nguyen@vub.be (Giang Nguyen)

Finvex Research Paper November 30, 2017



1. Introduction

Bond–equity, equity–gold, domestic equity–emerging markets equity; these are all important two–asset
allocation problems. Ideally, the tactical asset allocation is such that the portfolio performs nearly as well
as what ex post turns out to be the best performing asset. This objective is inherent in a tactical asset allo-
cation that uses the Margrabe Best–of–two (MBo2) strategy. Commercial examples include the NYUSDA
index (see, e.g., Kula et al., 2017) and Metzler best–of–Germany index, among others. Their investment
rule consists of dynamically allocating the portfolio between the high–risk asset (the NYSE U.S. Large
Cap Equal Weight Index (NYLGCAPT) and German large cap equity future index) and the low–risk asset
(NYSE Current 10–Year U.S. Treasury Index (AXTEN) and German bond future). The index uses monthly
rebalancing. At the end of the year, the portfolio makes a reversal trade by setting the weight allocation to an
equal 50–50 investment in the high– and low–risk assets. Within the year, a momentum strategy is pursued
by setting weights such that they replicate the value of the Margrabe option to exchange the low–risk asset
against the high–risk asset.

An unresolved question is to understand how the drivers of the Margrabe option value interact in de-
termining the MBo2 portfolio weights and performance. We investigate this for both backward–looking
variables, like the relative price of the high versus low–risk asset, and forward–looking parameters, like the
high– and low–risk assets’ return volatilities and correlation.1 We derive explicit formulae for the marginal
impact of the input parameters on the portfolio weights, and use numerical experiments to evaluate the
impact in case of large changes in the parameters. We then apply historical simulation to investigate the
drivers of the performance of the MBo2 strategy over the one– and five–year horizons. In particular, we
show that the relative price of the high–risk asset over the low–risk asset and the volatility of the high–risk
asset’s return are the primary drivers of the portfolio composition and portfolio performance of the MBo2
strategy. The correlation between two assets’ returns and the volatility of the low–risk asset’s return are
less influential. We document the upside potential and downside protection properties of the strategy using
real–world and block–bootstrap simulated data.

In addition to analyzing the determinants of the portfolio allocation and performance, we propose sev-
eral modifications to the traditional implementation of the MBo2 strategy. They include the use of option-
implied volatility of the high–risk asset’s return, a change in the reset date, and a different definition of
the maturity of the exchange option, among others. We find that the risk-adjusted performance improves
especially when calibrating the volatility using option-implied volatility rather than the sample or GARCH–
based volatility. It also leads to lower turnover and drawdowns.

The paper is organized as follows. We first present the MBo2 strategy in Section 2. Section 3 studies the
sensitivity of the MBo2 allocation to the input parameters. The simulation study of the MBo2 allocation’s
performance determinants is presented in Section 4. We propose and test alternative implementations of
the MBo2 strategy in Section 5. Section 6 concludes. Proofs of the various derivations are presented in the
Appendices.

2. The MBo2 strategy

2.1. Definition
We consider the problem of constructing a portfolio invested in a relatively high–risk asset (such as an

equity or a portfolio of equities) and a relatively low–risk asset (such as a government bond or a portfolio of

1In this paper, we use the logarithmic returns of assets’ prices to calculate assets’ return volatilities and correlation. For portfolio
performance, the simple returns of assets’ prices are applied.
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bonds). These assets are denoted by A and B, respectively. Their public prices at month–end t are denoted
by PA,t and PB,t.

The Margrabe allocation strategy involves investment decisions at two frequencies. At a low frequency
(typically yearly), it sets the weights of the two assets to 50%. At a higher frequency (typically monthly),
the portfolio is rebalanced to replicate the value of the Margrabe option to exchange an asset for another
asset. Henceforth, we call the low–frequency rebalancing dates as base dates. Without loss of generality,
we assume to have only two base dates, namely t0 and t1, and suppose that the high–frequency rebalancing
dates are denoted by t, with t0 < t < t1.

The European option to exchange an asset for another at a maturity date is computed by Margrabe
(1978) under the standard Black–Scholes’ assumptions. Before formally defining those weights, we need
some more notation. We denote by T the initial investment horizon of the option, defined as the period
between the two base dates, t0 and t1 (t1 = t0 + T ). Let τ ≡ T − t be the time to maturity of the option.
We denote by Φ(·) the standard normal cumulative distribution function. Let σA and σB be the annualized
volatility of asset A’s and B’s logarithmic returns and ρA,B the correlation between asset A’s and B’s
returns. We assume that σA, σB and ρA,B are constant during the remaining investment horizon. We use

σA−B ≡
√
σ2
A + σ2

B − 2σAσBρA,B to denote the volatility of the logarithmic return of the relative price.2

Finally, we denote by PA,t|t0 ≡ PA,t/PA,t0 and PB,t|t0 ≡ PB,t/PB,t0 their cumulative performance
since the reset date t0, respectively. We define the relative price of asset A versus asset B at time t as the
relative cumulative performance since the reset date t0:

PA/B,t|t0 ≡
PA,t|t0
PB,t|t0

.

Margrabe (1978) shows that, under the assumptions of Black and Scholes (1973), the price of the option to
exchange asset B for asset A at time t is then given by:

CB→At ≡ PA,t|t0Φ(d1)− PB,t|t0Φ(d2) , (1)

where:

d1 ≡
ln(PA/B,t|t0) + 1

2σ
2
A−Bτ

σA−B
√
τ

and d2 ≡ d1 − σA−B
√
τ .

Note that the price is an increasing function of the relative price, PA/B,t|t0 , the volatility of the logarith-
mic return of the relative price, σA−B , and the time until the maturity of the option, τ .3

The value of the MBo2 replicating portfolio is the sum of the value of assetB and the option to exchange
asset B for asset A. It is given by:

PMBo2,t = PA,t|t0Φ(d1) + PB,t|t0(1− Φ(d2)) . (2)

In Appendix A, we show that this is equivalent to computing PMBo2,t as the sum of the value of asset A and
the option to exchange asset A for asset B, and thus that PB,t|t0 + CB→At = PA,t|t0 + CA→Bt .

2To simplify notation, we omit the time index t in the volatility and correlation parameters.
3The latter two become clear by considering the special case where PA,t|t0 = PB,t|t0 . Then the option price equals

PA,t|t0(2Φ( 1
2
σA−B

√
τ)− 1), which is increasing in σA−B and τ .
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From (2), we obtain directly the portfolio weight that replicates the value of the MBo2 portfolio, namely:

wMBo2
A,t ≡

PA,t|t0Φ(d1)

PMBo2,t
and wMBo2

B,t ≡
PB,t|t0(1− Φ(d2))

PMBo2,t
.

In Appendix B, we show that, under the standard Black–Scholes’ assumptions, it is equivalent to calculate
the weight of the high–risk asset (asset A) in the MBo2 replicating portfolio as:

wA,t =
PA/B,t|t0Φ(d1)

PA/B,t|t0Φ(d1) + (1− Φ(d2))
=

E[PA/B,T |t|PA/B,T |t > 1]

E[PA/B,T |t|PA/B,T |t > 1] + P[PA/B,T |t < 1]
. (3)

The high–risk asset weight in the replicating portfolio then equals the ratio between its expected relative
price, when it exceeds one, and the sum of that value and the probability that the relative price ends lower
than one at maturity.
Since the portfolio is fully invested, the weight of the low–risk asset (asset B) in the portfolio is wB,t ≡
1 − wA,t. By construction, all weights are in the range of [0, 1]. In Appendix C, we show that, in the
special case where PA,t|t0 = PB,t|t0 (and thus PA/B,t|t0 = 1), the weight of the high–risk asset is 50%
irrespective of the values for the other parameters. On each of the low–frequency base dates, t0 and t1, we
thus have wA,t = 0.5. Between the rebalancing dates, the weights automatically adjust in function of the
relative performance of the assets A and B.

2.2. Illustration of the MBo2 strategy

The MBo2 strategy leads to a tactical allocation that, when compared to buy–and–hold investments in
one of the underlying assets, has the advantage of benefitting from the upside potential of the high–risk
asset and from the downside protection of the low–risk asset. We illustrate this here in the case of high and
low–risk assets chosen for investment in the US and Germany. The choice for these markets is inspired by
the NYUSDA index and Metzler best–of–Germany tactical asset allocation solutions. The two investment
problems that we study are the following:

• Allocate between US equities (S&P500 total return index, in USD) and US bonds (Barclays US
Treasury 7-10 year total return index, in USD);

• Allocate between German equities (DAX total return index, in EUR) and German bonds (Germany
Treasury 7-10 year total return index, in EUR).

For each of these universes, we compare the performance of the MBo2 with two traditional tactical alloca-
tion methods: (i) buy–and–hold investments in one underlying, and (ii) monthly rebalanced constant–mix
portfolios.4 We consider the performance over the period ranging from January 1992 to March 2017 (303
monthly observations).

Implementation. For this practical illustration, we have more than one reset–date. We denote these dates
by t0 ∈ {t0,1, t0,2 . . . t0,K} where the distance between any two consecutive dates is exactly equal to the
investment horizon of the option (T ). In the base model, the base date is the last trading day of each year.

4The market risk–free rate in the US is the T–bill one–month yields collected from the K. French data library: http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The risk–free rate in Ger-
many is the three–month interbank yields, available at the website of the Federal Reserve Bank of St. Louis: https:
//fred.stlouisfed.org/.
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On these base dates, the relative price is set at one and the weights on equity and bond are set to 50%/50%.
Volatilities and correlation of two assets’ returns are estimated using a rolling window of three years of
monthly returns (36 observations). The estimated values on a base date t0,k are kept constant during the
investment horizon of the option which is assumed to be 12 months (T = 12) until the next base date t0,k+1.
The portfolio weights are rebalanced on a monthly basis with the update of the relative price and the time
to maturity of the option. The out–of–sample window is from February 1995 to March 2017.

Impact on the cumulative performance. Figure 1 displays the cumulative performance of the buy–and–hold
strategies together with the MBo2 strategy for the US (the top panel) and German market (the bottom panel).
For both US and German markets, we see that the cumulative values of the buy–and–hold strategy on the
low–risk asset are more stable than those invested in the high–risk asset. This comes at the price of a lower
performance. Their cumulative values are half of those of strategies investing in the high–risk asset (4.0
compared with 6.0-8.0). Regarding the MBo2 strategy, we see that volatility is between the values of the
buy–and–hold strategy on the high–risk asset and low–risk asset, respectively. It outperforms in terms of a
higher end–of–period cumulative value (10.0-11.0) and is more stable, as it avoids large losses in the bearish
periods of 2000–2002 (the dot–com crisis) and 2007-2008 (the global financial crisis), and participated in
the upside potential of equities in the bullish period.

Impact on the risk–return. In order to gauge the risk–return properties of these investment solutions,
we compare in Table 1 the out–of–sample performance statistics of the MBo2 strategy with those of the
buy–and–hold strategy on each asset, and the constant–mix strategies of 50/50 equal-weighting and 60/40
weighting.

In Panel A of Table 1, we find that, for the US market, the MBo2 strategy has the highest annualized
return (10.69%) and the highest Sharpe ratio (0.77) over the out–of–sample evaluation period February
1995–March 2017. Its volatility is lower than the buy–and–hold strategy on the high–risk asset and the
constant–mix 60/40 strategy (8.52% versus 14.82% and 8.72%). The buy–and–hold strategy on the bond
index has the lowest values of volatility and drawdown (6.26% and 7.37%, respectively). The lower risk
comes at the cost of a lower return (6.24%). The reverse applies to the buy–and–hold strategy on the
equity index. The equally–weighted or constant–mix 60/40 strategies generate returns, volatilities, and
drawdowns in the range of the buy–and–hold strategy on equities and bonds. It is interesting to note that the
worst drawdown of the MBo2 strategy (14.3%) was in August 1998 when the market crashed by 14.6% in
a month. Meanwhile, during the financial crisis of 2008, the MBo2 strategy only suffered from a drawdown
of 10.0% compared with 51% for the buy–and–hold strategy on the equity. This illustrates the downside
risk protection offered by the MBo2 strategy compared to buy-and-hold investment.
As can be expected, the monthly rebalancing to replicate the value of the Best–of–two portfolio and the
yearly rebalancing to the 50–50 constant mix leads to a relatively high annualized turnover of 62.53%. To
show that the outperformance in terms of higher Sharpe ratio is also to be expected in terms of net returns
(after transaction costs), we report in the last column of Table 1 the so–called break–even transaction costs
(BETC) of the MBo2 versus the four alternative investment strategies. The BETC is defined as the fee
(expressed in cents per dollar traded) that the MBo2 strategy can charge such that it has, in net returns, an
equal Sharpe ratio with the alternative strategy. As can be seen in Table 1, it varies between 86 and 178
cents per dollar traded. We can thus conclude that the outperformance of the MBo2 strategy in terms of
Sharpe ratio is high enough to be robust to realistic values of transaction cost.
Similar results are observed when investing in the German market, where the MBo2 strategy yields the
highest return, and a lower volatility and drawdown than the buy–and–hold strategy on equities.
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Figure 1: Cumulative values of strategies on two–asset allocation
The figure displays the out–of–sample cumulative values of the buy–and–hold and the MBo2 investment in the high–
risk asset (S&P 500 total return index or DAX total return index, the full black line) and the low–risk asset (Barclays
US Treasury 7-10 year total return index or Germany Treasury 7-10 year total return index, the gray dotted line) over
the period February 1995 to March 2017. Top (resp. bottom) chart shows the cumulative value of $1 (resp. e1)
invested in the U.S (resp. German) market. See Section 2.2 for details.
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Table 1: Performance of tactical allocation strategies in equities and bonds for the US and German markets
This table presents the portfolio performance of the buy–and–hold strategy for each asset, the constant–mix strategies
(Equally weighted – EW, constant–mix of 60% equity and 40% bond – CM 60/40), and the MBo2 strategy (MBo2).
For each strategy, seven performance criteria are presented: Cumulative value of $1 investment (CVal), annualized
geometric return (Mean, in percent), annualized standard deviation (Std, in percent), annualized Sharpe ratio (SR),
maximum drawdown (MaxDD, in percent), 5% modified Value-at-Risk (MVaR, in percent), the average annualized
turnover (TO, in percent), and the break–even transaction cost that makes the annualized Sharpe ratio of the MBo2
strategy equal to the annualized Sharpe ratio of the alternative strategy with lower Sharpe ratio computed on gross
returns (BETC, in percent). The out–of–sample period ranges from February 1995 to March 2017, for a total of 266
monthly observations. See Section 2.2 for details.

Strategies CVal Mean Std SR MaxDD MVaR TO BETC

Panel A: Tactical allocation strategies for the US market
Equity 7.68 9.64 14.82 0.37 50.95 6.85 − 1.78
Bond 3.82 6.24 6.26 0.36 7.37 2.37 − 1.43
EW 5.89 8.33 7.41 0.57 23.28 3.08 6.14 0.86
CM 60/40 6.30 8.66 8.72 0.52 29.69 3.75 5.91 1.14
MBo2 9.51 10.69 8.52 0.77 14.30 3.35 62.53 −

Panel B: Tactical allocation strategies for the German market
Equity 6.08 8.48 21.49 0.23 68.29 9.98 − 2.50
Bond 4.06 6.52 4.79 0.64 7.61 1.75 − −
EW 5.79 8.24 10.38 0.45 33.56 4.45 8.31 1.23
CM 60/40 6.00 8.42 12.53 0.39 42.20 5.52 8.03 1.67
MBo2 9.48 10.68 12.00 0.59 20.53 4.49 57.34 −

3. Drivers of the weight allocation of the MBo2 strategy

From the weight definition in (3), it follows that the MBo2 weights are a non-linear function of various
parameters In this section, we shed more light on the sensitivity of the weights to those parameters. We
first compute the partial derivatives of the weight of the high–risk asset A with respect to each of the input
parameters.5 These derivatives show the direction and the magnitude of the effect of an infinitesimal change
in the input parameters. We then use a numerical evaluation to quantify the effects of larger changes in the
magnitude of the parameters.

3.1. High–risk asset weight partial sensitivity to the input parameters

A crucial feature of the momentum interpretation of the MBo2 weight allocation is that the weight of
the high–risk asset is an increasing function of the relative price of the high–risk asset regarding the price
of the low–risk asset. It implies that the partial derivative of the high–risk asset weight with respect to its
relative price must be positive. We prove this in Appendix D, where we obtain the following expression:

5The derivatives for the low–risk asset B follow directly from wB,t ≡ 1− wA,t.
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∂wA,t
∂PA/B,t|t0

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2︸ ︷︷ ︸

>0

×
{

(1− Φ(d2))Φ(d1) +
1

σA−B
√
τ

[(1− Φ(d2))φ (d1) + φ (d2)]

}
︸ ︷︷ ︸

≥0

. (4)

In Appendices E–H, we show that the partial derivatives of the weight of the high–risk asset with respect
to the other parameters (return’s volatility, correlation, and the time to maturity of the Margrabe option) have
a common structure, namely:

∂wA,t
∂σA

= κ×
(
σA − σBρA,B

)︸ ︷︷ ︸
>0

(5)

∂wA,t
∂σB

= κ×
(
σB − σAρA,B

)
(6)

∂wA,t
∂ρA,B

= (−1)× κ× σAσB (7)

∂wA,t
∂τ

= κ× 1

2
σA−B , (8)

where we use that, by definition of the high–risk asset, σA > σB and thus σA− σBρA,B > 0. The common
parameter κ is given by:

κ ≡
PA/B,t|t0

√
τ[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2︸ ︷︷ ︸

>0

×

[
(1− Φ(d2))φ(d1)

(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
− Φ(d1)φ(d2)

(
ln(PA/B,t|t0)

σ2
A−Bτ

+ 1

)]
. (9)

A sufficient condition for κ to be negative is that ln(PA/B,t|t0) ≥ σ2
A−Bτ , which means that PA/B,t|t0 ≥

exp(σ2
A−Bτ). When the high–risk asset outperforms the low–risk asset, we thus have that an increase of

the volatility of the high–risk leads to a decrease of the high–risk asset’s weight in the MBo2 replicating
portfolio. Such directional impact is similar to those of the time to the maturity and the volatility of the low–
risk asset (under the condition that ρA,B < σB/σA). Such impact is opposite to those of the correlation
of two assets’ returns. Regarding the magnitude of the impact, the volatility of the high–risk asset’s return
and the time to maturity have a big impact on the weight of the high–risk asset in the MBo2 replicating
portfolio. Such impact is bigger than those of the volatility of the low–risk asset’s return and the correlation
of two assets’ returns.
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3.2. Numerical study of the sensitivity of wA,t to the input parameters

We now illustrate the sensitivity of the MBo2 weights to larger (non–infinitesimal) changes in the pa-
rameters in a stylized setup. We first describe the calibration of the parameters and then discuss the results.

Setup. As the reference scenario, we assume that the relative price of asset A over B is 1.1 (PA/B,t|t0 =
1.1). The volatility of the high–risk and low–risk asset return series is 25% and 6%, respectively. The
correlation is -0.2. The initial investment horizon of the MBo2 investment strategy is 12 months and the
evaluation period is the fifth one (seven periods until the exercise of the option). In terms of the key
parameters of (5)–(8), we have that, κ = −0.16 and σB − ρA,BσA = 0.11. Table 2 reports the results of
the numerical study of the joint impact of the input parameters on the weight of the high–risk asset in the
MBo2 replicating portfolio.

Sensitivity to the relative performance. Let us first investigate how the relative performance of the high–risk
asset compared to the low–risk asset affects the high–risk asset weight, while keeping all other variables
constant. Since the partial derivative of the weight of the high–risk asset with respect to the relative price
is positive (as (4)), the weight on the high–risk asset increases when the relative price increases, ceteris
paribus. This can be seen in the column of the numbers in bold in Panel A of Table 2. The weight varies
from 0.51% to 95.59% for a range of relative prices from 0.6 to 1.4, respectively. For all columns, we see
that the weight of the high–risk asset increases when the relative price increases.

Sensitivity to the volatility. The second block of Panel A shows that the weight is also very sensitive to
the volatility of the high–risk asset’s return.6 At a relative price of 1.1, the weights of the high–risk asset
are 93.05%, 68.68%, and 61.44% for the volatility of the high–risk asset’s return at 5%, 25%, and 45%,
respectively. The decrease in weight of the high–risk asset when its volatility increases reflects the decrease
in probability that the relative price at maturity still exceeds one.

Comparing the bold column (the volatility of the high–risk asset’s return is at 25%), and changing the
volatility of the low–risk asset from 4% (the middle column in the first block) to 8% (the middle column
in the third block), the weight does not change much (e.g., at the relative price level of 1.2, the weights are
83.01% and 81.62% if the volatility of the low–risk asset is at 4% and 8%, respectively versus 82.35% of
the base case where the volatility of the low–risk asset is 6%.).

Sensitivity to the correlation. From (7), the effect of the correlation is opposite to the sign of κ. As κ in
our reference case is negative, an increase in correlation leads to an increase in the weight. This effect is
however weak. In fact, as can be seen in Panel B of Table 2, the correlation has less impact on the weight
of the high–risk asset in the MBo2 replicating portfolio. Particularly, when the relative price is 1.1, ceteris
paribus, the weight of the high–risk asset is 67.18%, 68.68%, and 70.68% for correlation values of -0.7,
-0.2, and 0.3, respectively.

Sensitivity to the time to maturity. According to (8), the directional impact of the high–risk asset weight
positively relates to κ. In our reference case, κ is negative. When the time to maturity decreases, the high–
risk asset weight thus increases. This can be seen in Panel C where the relative price is 1.1, ceteris paribus,
the high–risk asset weight increases slightly (65.28%, 68.68%, and 76.76%) for decreasing values of time
to maturity (eleven, seven, and three periods until the maturity). The impact is thus moderate.

6We do not report the second block in Panel B and Panel C as they are the same as in Panel A.
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Table 2: Numerical study of the sensitivity of the high–risk asset weight with respect to parameters
This table presents the weight of the high–risk asset in the MBo2 replicating portfolio using the MBo2 strategy for
various values of the input parameters. Panel A shows the sensitivity of the weight of the high–risk asset with respect
to the volatility of the low–risk asset’s return. The sensitivity with respect to the correlation of two assets’ returns is
presented in Panel B. Panel C shows the sensitivity with respect to the time to maturity of the option. The base case
of our analysis is presented in the middle column and marked in bold. Middle columns of Panel B and Panel C are
skipped as they are the same as those of Panel A. See Section 3 for details.

Panel A: wA,t for various values of the low–risk asset’s return volatility σB
σB = 4% and σA = σB = 6% and σA = σB = 8% and σA =

PA/B,t|t0 5% 15% 25% 35% 45% 5% 15% 25% 35% 45% 5% 15% 25% 35% 45%

0.60 0.00 0.00 0.41 2.56 5.97 0.00 0.00 0.51 2.76 6.19 0.00 0.01 0.63 3.00 6.44
0.70 0.00 0.18 3.18 8.53 13.70 0.00 0.29 3.55 8.90 13.99 0.00 0.47 4.00 9.31 14.31
0.80 0.00 3.32 12.17 19.46 24.60 0.03 4.12 12.81 19.86 24.86 0.20 5.11 13.54 20.31 25.14
0.90 2.33 19.20 29.02 34.17 37.25 5.11 20.51 29.53 34.43 37.40 8.58 21.92 30.09 34.71 37.56
1.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
1.10 96.41 78.45 69.15 64.39 61.57 93.05 77.19 68.68 64.16 61.44 89.20 75.84 68.15 63.90 61.29
1.20 99.97 93.35 83.01 75.94 71.29 99.76 92.24 82.35 75.57 71.06 99.08 90.94 81.62 75.16 70.81
1.30 100.00 98.44 91.46 84.40 79.02 100.00 97.93 90.87 83.99 78.74 99.96 97.25 90.20 83.54 78.43
1.40 100.00 99.71 96.01 90.21 84.91 100.00 99.54 95.59 89.83 84.62 100.00 99.29 95.09 89.40 84.30

Panel B: wA,t for various values of the return correlation ρA,B
ρA,B = −0.7 and σA = ρA,B = -0.2 and σA = ρA,B = 0.3 and σA =

PA/B,t|t0 5% 15% 25% 35% 45% 5% 15% 25% 35% 45% 5% 15% 25% 35% 45%

0.60 0.00 0.03 0.94 3.65 7.23 0.00 0.00 0.20 1.90 5.10
0.70 0.00 0.75 4.94 10.39 15.28 0.00 0.05 2.18 7.24 12.54
0.80 0.18 6.32 14.96 21.43 25.99 0.00 1.93 10.23 17.97 23.53
0.90 8.38 23.43 31.14 35.40 38.04 1.69 16.32 27.38 33.21 36.63
1.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
1.10 89.42 74.40 67.18 63.27 60.85 97.26 81.27 70.68 65.27 62.13
1.20 99.14 89.45 80.22 74.13 70.07 99.99 95.48 85.04 77.33 72.25
1.30 99.97 96.37 88.86 82.37 77.51 100.00 99.24 93.18 85.91 80.17
1.40 100.00 98.91 94.05 88.28 83.33 100.00 99.91 97.16 91.57 86.09

Panel C: wA,t for various values of the time to maturity of the option τ
τ = 3 and σA = τ = 7 and σA = τ = 11 and σA =

PA/B,t|t0 5% 15% 25% 35% 45% 5% 15% 25% 35% 45% 5% 15% 25% 35% 45%

0.60 0.00 0.00 0.01 0.21 1.13 0.00 0.08 1.89 5.97 10.46
0.70 0.00 0.00 0.34 2.23 5.47 0.00 1.32 7.22 13.70 18.90
0.80 0.00 0.44 4.42 10.33 15.70 0.29 8.12 17.95 24.60 29.00
0.90 0.65 10.67 20.96 27.47 31.67 9.52 25.39 33.20 37.25 39.67
1.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
1.10 98.77 86.99 76.76 70.59 66.69 88.20 72.55 65.28 61.57 59.36
1.20 100.00 98.41 91.84 84.93 79.49 98.81 87.36 77.35 71.29 67.46
1.30 100.00 99.90 97.73 93.09 88.14 99.94 94.95 85.93 79.01 74.22
1.40 100.00 100.00 99.47 97.10 93.47 100.00 98.20 91.59 84.91 79.73
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Visualization of sensitivity to parameters. To gain a better intuition on the sensitivity of the weight to the
input parameters, we plot in Figures 2 and 3 the high-risk asset weight as a function of the relative price,
return volatilities, correlation, and time to maturity, respectively. In Figure 2 we see that when the relative
price is at 1.0, the weight of the high–risk asset is always 50% regardless of the value of the other parameters.
In case of a relative price of 0.9, an increase in volatilities of two assets’ returns and the number of periods
until maturity lead to an increase of the weight of the high–risk asset, while an increase of the correlation
leads to a slight decrease of the weight. The opposite holds for a relative price of 1.1.

Figure 2: Sensitivity of the high–risk asset weight with respect to parameters
These plots display the weight of the high–risk asset in the MBo2 replicating portfolio (wA,t) for various levels of
the input parameters. Each plot considers three different values of the relative prices (0.9, 1.0 and 1.1) and different
values of high–risk asset volatility (top left), correlation (top right), the low–risk asset volatility (bottom left), and
time to maturity (bottom right). See Table 2 for details.
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Figure 3: Sensitivity of the high–risk asset weight with respect to the relative price
This plot shows the weight of the high–risk asset (wA,t) with respect to the relative price and two extreme Margrabe
option parameter values. Each plot considers the weight of the high–risk asset sensitivity to a range of relative prices
(from 0.6-1.4) and two extreme (high and low) values of high–risk asset’s return volatility (top left), correlation (top
right), low–risk asset’s return volatility (bottom left), and time to maturity of the option (bottom right). See Table 2
for details.

Table 2 illustrates the dependence of the high–risk asset weight on input parameters for a small grid of
values. In Figure 3, we plot the high–risk asset weight as a continuous function of the relative price for
various values of the other parameters. Figure 3 shows that the weight of the high–risk asset is extremely
different in cases of low and high value of the high–risk’s asset volatility (5% and 45%, respectively). In
particular, when the volatility of the high–risk asset’s return is 5%, the high–risk asset weight increases from
5.11% to 50% when the relative price increases from 0.9 to 1.0. Meanwhile, the high–risk asset weight only
increases from and 37.40% to 50% when the volatility of the high–risk asset’s return is 45%.

Overall, at the high volatility of the high–risk asset’s return (45%), the high–risk asset weight in the
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replicating portfolio is almost a linear function of the relative price with a positive slope. This is not the
case for the low volatility level of the low–risk asset, where the weight of the high–risk asset does not
change.

Regarding the correlation between two assets’ returns, one can note that the gap between the two lines
of the weight of the high–risk asset is smaller than those of the volatility of the high–risk asset’s returns
and the time to maturity of the option. The impact on the weight of the high–risk asset is, therefore, less
noticeable than those of the volatility and the time to maturity of the option.

The difference between the two extreme values of the time to maturity of the Margrabe option is less
obvious than the volatility of the high–risk asset but clearer than the correlation. For all parameters, we see
the non–linear and asymmetric relation between the relative price and the weight of the high–risk asset in
the MBo2 replicating portfolio. In addition, when the relative price is either extremely high/low or close to
one, the differences are smaller than those in the other cases.

4. The non–linearity between the performance of the high–risk asset and the MBo2 strategy

In this section, we study the portfolio performance of the MBo2 strategy for a one–year and a five–year
investment horizon. We illustrate that the MBo2 is an investment strategy that benefits from the upside
potential of the high–risk asset and the downside protection of the low–risk asset.

4.1. Simulation methodology

Investors in the MBo2 solutions typically have a medium to long–term investment horizon. Typical
investment horizons are one year or longer. The drawback of such a long investment horizon is that the
historical data provide only a small number of evaluation samples. To overcome this problem, we follow
Perold and Sharpe (1995) and Ardia et al. (2016) and backtest the MBo2 strategy by simulating M arti-
ficially generated price–paths of the high–risk asset for two investment horizons: one year and five years.
Based on Jegadeesh and Titman (1993), the momentum strategy requires sampling windows of at least three
months to preserve the positive autocorrelation in the return series. We therefore apply a block–bootstrap
with block length of four and six months (for one–year and five–year investment horizons, respectively)
which are sufficient to strike a balance between preserving the momentum in the returns, and allowing
for heterogeneity in the simulated paths. Following Perold and Sharpe (1995) and Ardia et al. (2016), we
simulate M = 10,000 price–paths.

4.2. Results

Figure 4 displays the results for the one–year investment horizon. We show the year–end value of the
buy–and–hold strategy on the high–risk asset (the horizontal axis) and the weight on the high–risk asset of
the MBo2 strategy (the top charts) as well as the portfolio performance (the bottom charts). Results are
shown for the investment in the US and German markets.
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Figure 4: Portfolio composition and performance of the MBo2 strategy for a one–year investment horizon
These plots show the average high–risk asset weights and the corresponding cumulative values over one–year invest-
ment of the MBo2 strategy. The reference performance is the buy–and–hold strategy on the high–risk asset (the full
line). These strategies invest in the US market (top left and bottom left charts) and the German market (top right and
bottom right charts). Data is simulated by using the block–bootstrap technique. See Section 4 for details.

Consider first the dependence of the high–risk asset weight on the year–end value of the high–risk asset
in the two top charts. We see increasing values of the high–risk asset weight for increasing year-end values
of the buy–and–hold strategy on the high–risk asset. Note that when the high–risk asset ends below one, the
MBo2 strategy invests less than 50% in the high–risk asset on average (and more than 50% in the low–risk
asset). It therefore indicates a downside protection in the bearish market. The weights of the high–risk asset
increase to about 85% when the high–risk asset ends at 1.6 in the bullish market. It implies a moderate
uptrend potential of the MBo2 strategy.
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Regarding the portfolio performance (two charts at the bottom), the full line represents the year–end value
of the buy–and–hold strategy on the high–risk asset. As we can see, the cumulative value is a linear function
of the year–end value of the high–risk asset (the slope of the line is one). Different from the buy–and–hold
strategy, the year–end value of the MBo2 strategy has a non–linear dependence on the year–end value of
the high–risk asset. It implies a dependence on both of the high– and low–risk assets’ price. At the extreme
low year–end value of the high–risk asset (e.g. 0.7, or 30% of drawdown, equivalently) the weight on the
high–risk asset is less than 50%. The portfolio value is then close to 1.05 (5% gain). The portfolio value
gradually decreases when the year–end value of the high–risk asset increases up to one. When the year–end
value of the high–risk asset is greater than one, the year–end value of the MBo2 strategy is slightly lower
than those of the high–risk asset.

In Figure 5, we present results of the five–year investment horizon. We see similar patterns of the weight
chart and the portfolio performance compared with the performance of the one–year investment strategy.
The average weights on the high–risk asset increase in stable paths in corresponding with increasing final–
value of the buy–and–hold strategy on the high–risk asset. Regarding the portfolio performance, when the
buy–and–hold strategy on the high–risk asset yields a minimum cumulative value of 0.4 (60% of draw-
down), the MBo2 strategy yields a cumulative value of 1.2 (20% gain) on average. For the other cumulative
values from 1.6 to 3.1, the buy–and–hold strategy on the high–risk asset yields slightly better cumulative
values than the MBo2 strategy. In the best case, the buy–and–hold strategy on the high–risk asset has a
maximum cumulative value of 3.4 (240% gain) while the cumulative value of the MBo2 strategy is 2.4
(140% gain) on average. Similar to the one–year MBo2 investment, the five–year MBo2 strategy combines
the upside potential and the downside protection. It outperforms the buy–and–hold strategy on the high–risk
asset during the downtrend market and underperforms during the uptrend market.

5. Improving the design of the MBo2 strategy

5.1. Methodology

The current implementation of the MBo2 strategy uses backward–looking estimations of volatilities,
correlation, and a yearly rebalancing date in January. In this section, we investigate whether we can improve
the MBo2 performance by considering alternative implementations.

First, we apply the forward–looking approaches of volatilities and correlation to relax the assumption
of using backward–looking estimators. In the first approach (Alt#1), the implied volatility data of the S&P
500 and DAX index (VIX and VDAX) from CBOE is used instead of the rolling volatility of the high–risk
asset’s returns. In the second approach (Alt#2), volatilities of two assets’ returns are forecasted using the
GARCH(1,1) model of Bollerslev (1986), while the correlation is estimated in the dynamic conditional
correlation (DCC) model of Engle (2002). The volatilities are forecasted for T different horizons (from 1
to T ). The average of these values is used in the optimization over the period [t0,k, t0,k+1] (see the iterated
variance approach of Ghysels et al. (2009) for details).

Second, we relax the assumption on the rebalancing strategy. In Alt#3, we consider a longer investment
horizon in the option (T = 24 months). In practice, traders also use a one–month investment horizon for the
option (T = 1 month). Therefore, we apply an alternative approach using a one–month investment horizon
of the option where volatilities and correlation are also updated every month (Alt#4). The formula that
links the time–varying weights and correlation parameter is the same as in (3), but we replace the constant
parameters with their time–varying alternatives.

Regarding the base date, we set it in January as this is standard practice (Ariel (1990) and Thaler (1987)).
In the financial market, Bouman and Jacobsen (2002) analyze the long–lasting axiom: ‘Sell in May, and
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Figure 5: Portfolio composition and performance of MBo2 strategy for a five–year investment horizon
These plots show the average high–risk asset weights and the corresponding cumulative values over five–year invest-
ment of the MBo2 strategy. The reference performance is the buy–and–hold strategy on the high–risk asset (the full
line). These strategies invest in the US market (top left and bottom left charts) and the German market (top right and
bottom right charts). Data is simulated by using the block–bootstrap technique. See Section 4 for details.
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go away’. They find that the stock returns during the period May– October is significantly lower than the
remainder period (September– April) for 36 out–of the 37 studied countries, including the United States
and Germany. We, therefore, test an alternative implementation which rebalances in May (Alt#5). In Alt#6,
we implement a strategy to rebalance the portfolio on a daily basis. The specifications of the alternative
implementations considered of the MBo2 strategy are summarized in Panel A of Table 3.

Table 3: Alternative implementations for the MBo2 strategy
This table presents the traditional approach of the MBo2 strategy and six alternative implementations to measure
the forward–looking volatilities, correlation of the high–risk and low–risk assets’ returns, length of the option, reset
month, and rebalance strategy (Panel A). Rolling approach is estimated from rolling windows of returns series (volatil-
ities are annualized). In the first approach (Alt#1), the implied volatility of the high–risk asset’s return (the implied
volatility index of S&P 500 index- VIX provided by CBOE- and DAX- VDAX) is applied. In Alt#2, the volatilities
and correlation are forecasted using the GARCH(1,1) and DCC models, respectively. Alt#3 and Alt#4 modify the
investment horizon of the option (T = 24 months and 1 month, respectively). Alt#5 assumes that the reset month is in
May. In Alt#6, we rebalance the weight on a daily basis and aggregate the daily returns to make performance criteria
comparable with other implementations. The performance of the strategies is shown in Panel B (the US market) and
Panel C (the German market). See Table 1 for details.

Panel A: Implementations
Approach σA σB ρA,B T Reset Rebalance

MBo2 Rolling Rolling Rolling 12 Jan Monthly
Alt#1 Implied Rolling Rolling 12 Jan Monthly
Alt#2 GARCH GARCH DCC 12 Jan Monthly
Alt#3 Rolling Rolling Rolling 24 Jan Monthly
Alt#4 Rolling Rolling Rolling 1 Jan Monthly
Alt#5 Rolling Rolling Rolling 12 May Monthly
Alt#6 Rolling Rolling Rolling 12 Jan Daily

Panel B: Portfolio performance on the US market
Approach CVal Mean Std SR MaxDD MVaR TO

MBo2 9.51 10.69 8.52 0.77 14.30 3.35 62.53
Alt#1 9.05 10.45 8.05 0.78 11.08 3.06 52.49
Alt#2 9.08 10.46 8.46 0.75 13.71 3.34 62.50
Alt#3 8.29 10.01 8.69 0.68 13.55 3.42 50.24
Alt#4 10.08 10.99 9.14 0.75 15.36 3.71 84.54
Alt#5 9.25 10.56 7.78 0.82 8.91 2.63 57.50
Alt#6 7.43 9.47 8.30 0.64 11.60 3.16 75.42

Panel C: Portfolio performance on the German market
Approach CVal Mean Std SR MaxDD MVaR TO

MBo2 9.48 10.68 12.00 0.59 20.53 4.49 57.34
Alt#1 9.77 10.83 11.77 0.61 19.08 4.38 54.69
Alt#2 9.97 10.93 12.04 0.61 20.43 4.51 56.81
Alt#3 8.87 10.35 11.75 0.57 19.79 4.28 48.09
Alt#4 10.25 11.07 12.73 0.58 22.25 4.87 78.48
Alt#5 9.23 10.54 10.91 0.64 17.40 4.12 60.92
Alt#6 9.20 10.57 12.15 0.57 22.43 4.36 66.06
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5.2. Performance

In Table 3, we present the performance of alternative implementations of the United States (Panel B) and
German markets (Panel C). For the United States market, four implementations (Alt#1, 2, 5, and 6) yield
lower volatilities and drawdowns than the traditional MBo2 strategy. Alt#5, which relaxes the assumption
of rebalancing monthly in May, yields a slightly higher Sharpe ratio than the traditional MBo2 strategy
(0.82). Regarding the portfolio return, Alt#4 (using the investment horizon on the option is one months
instead of 12 months as the traditional and other implementations) yields the highest cumulative end–value
and annualized return ($10.08 and 10.99%). Its volatility and drawdown are therefore slightly higher than
other implementations (9.14% and 15.36%).
For the investment in the German market, we find almost the same conclusions, where Alt#1, 3 and 5 reduce
the annualized volatility and drawdown compared to the base MBo2. Meanwhile, Alt#4 yields the highest
return (11.07% compared to 10.68% of the base MBo2).

In summary, we recommend to consider an alternative implementation of the MBo2 strategy by the
use of option–implied volatility (Alt#1) instead of the historical volatility. It yields a higher risk–adjusted
return, lower volatility, lower drawdown and slightly lower turnover than the traditional implementation.

6. Conclusion

In the bond–equity investment problem, the MBo2 strategy is a tactical asset allocation strategy. The
rule behind the strategy is to dynamically allocate the capital on the bond and equity given by the informa-
tion on their relative price, volatilities, correlations of their returns, and the time to maturity of the exchange
option. While it is somewhat popular in practice, its properties have not been studied in detail. In this paper,
we provide practitioners with better insights on the MBo2 strategy.

First, we derive explicit formulae of the impact of the inputs of the strategy on the portfolio composition
and the portfolio performance. We show that among the parameters of the strategy, the relative price and
the volatility of the high–risk asset’s return are the most influential parameters driving the portfolio weight.

Second, we use the simulated data using the block–bootstrap technique to study the sensitivity of the
portfolio weights and performance of the MBo2 strategy. It confirms the upside potential and the drawdown
protection over the one– and five–year investment horizons.

Third, we investigate various implementations relaxing implementations of the traditional strategy. The
analysis shows that the implementation using the option–implied volatility yields a similar return, lower
volatility, higher Sharpe ratio, lower drawdown, and lower turnover than the traditional implementation.
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Appendix A. Equivalent expression for the value of the MBo2 replicating portfolio

The MBo2 strategy consists of investing in an underlying asset and buying the Margrabe option to
exchange an asset for another asset. Using the valuation formula (1), we can construct a replicating portfolio
by investing directly in asset A and asset B. The value of the MBo2 replicating portfolio is equal to the
sum of the price of asset B and the option price to exchange asset B for asset A (see Rubinstein and Leland
(1981)):

PMBo2,t ≡ PB,t|t0 + CB→At . (A.1)

To show that PMBo2,t = PA,t|t0 + CA→Bt , we first rewrite:
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Using ln(x) = −ln(1/x) with x > 0 and Φ(x) = 1− Φ(−x), we can write (A.2) as:
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A−Bτ

σA−B
√
τ

))
+ PB,t|t0Φ

(
ln(PB/A,t|t0) + 1

2σ
2
A−Bτ

σA−B
√
τ

)

= PA,t|t0 + PB,t|t0Φ

(
ln(PB/A,t|t0) + 1

2σ
2
A−Bτ

σA−B
√
τ

)
− PA,t|t0Φ

(
ln(PB/A,t|t0)− 1

2σ
2
A−Bτ

σA−B
√
τ

)
= PA,t|t0 + CA→Bt . (A.3)

The value of the MBo2 replicating portfolio is:
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PMBo2,t = PA,t|t0Φ(d1) + PB,t|t0(1− Φ(d2)) . (A.4)

Appendix B. Composition of the MBo2 replicating portfolio

Given the value of the Margrabe replicating portfolio in Appendix A, the question is how many units
of asset A (nA) and asset B (nB) do we need to buy to have a portfolio with the value equal to the value of
the MBo2 replicating portfolio? From equal–value conditions, we have:

PA,tnA,t + PB,tnB,t = PMBo2,t = PA,t|t0Φ(d1) + PB,t|t0(1− Φ(d2)) . (B.1)

We have that PA,t = PA,t|t0PA,t0 and PB,t = PB,t|t0PB,t0 , which implies:

PA,t0nA,t = Φ(d1) (B.2)

PB,t0nB,t = 1− Φ(d2) . (B.3)

The weight of asset A in the MBo2 replicating portfolio is:

wA,t ≡
PA,tnA,t

PA,tnA,t + PB,tnB,t
=

PA,t|t0Φ(d1)

PA,t|t0Φ(d1) + PB,t|t0(1− Φ(d2))
=

PA/B,t|t0Φ(d1)

PA/B,t|t0Φ(d1) + (1− Φ(d2))
,

(B.4)

and the weight of asset B in the MBo2 replicating portfolio is:

wB,t ≡
PB,tnB,t

PA,tnA,t + PB,tnB,t
=

PB,t|t0(1− Φ(d2))

PA,t|t0Φ(d1) + PB,t|t0(1− Φ(d2))
=

(1− Φ(d2))

PA/B,t|t0Φ(d1) + (1− Φ(d2))
.

(B.5)

Note that wB,t = 1− wA,t.
To prove (3), we further recall that under the Black–Scholes assumptions, we have that, at time t, the

standardized variable:

z ≡
ln
(
PA/B,T |t
PA/B,t|t0

)
+

σ
2
A−B
2 τ

σA−B
√
τ

∼ N(0, 1) . (B.6)

At maturity, the expected value of the relative price conditional on the relative price is greater than one
is:
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E[PA/B,T |t|PA/B,T |t > 1] = E[PA/B,T |t| ln(PA/B,T |t) > 0]

=

∫ +∞

ln(PA/B,T |t)=0
PA/B,T |tf(ln(PA/B,T |t))d(ln(PA/B,T |t))

= PA/B,t|t0
1√
2π

∫ +∞

z=−d2
e−

z
2−2zσA−B

√
τ+σ

2
A−Bτ

2 dz

= PA/B,t|t0
1√
2π

∫ +∞

−d2
e−

(z−σA−B
√
τ)

2

2 dz

= PA/B,t|t0
1√
2π

∫ +∞

y=−d2−σA−B
√
τ
e−

y
2

2 dy

= PA/B,t|t0
1√
2π

∫ +∞

−d1
e−

y
2

2 dy

= PA/B,t|t0(1− Φ(−d1)) = PA/B,t|t0Φ(d1) , (B.7)

where f(x) is the probability density function of the normal random variable ln(PA/B,T |t) with mean

ln(PA/B,t|t0)− σ
2
A−B
2 τ and variance σ2

A−Bτ . Note that we use y = z − σA−B
√
τ and dy = dz in the fifth

equation.
The probability that the relative price will be higher than one at maturity is:

P[PA/B,T |t > 1] = P[ln(PA/B,T |t) > 0] =

∫ +∞

ln(PA/B,T |t)=0
f(ln(PA/B,T |t))d(ln(PA/B,T |t))

=

∫ +∞

z=−d2
f(z)dz = 1− Φ(−d2) = Φ(d2) . (B.8)

Then the weight of asset A in (B.4) can be rewritten as:

wA,t =
E[PA/B,T |t|PA/B,T |t > 1]

E[PA/B,T |t|PA/B,T |t > 1] + P[PA/B,T |t < 1]
. (B.9)

The weight of asset B is:

wB,t =
P(PA/B,T |t < 1)

E[PA/B,T |t|PA/B,T |t > 1] + P[PA/B,T |t < 1]
. (B.10)

Appendix C. Sensitivity of wA,t in the special case where PA/B,t|t0 = 1

In the special case where PA/B,t|t0 = 1, we have d1 = −d2 and Φ(d1) = 1 − Φ(d2). From (3), the
weight of the high–risk asset is then:

wA,t =
PA/B,t|t0Φ(d1)

PA/B,t|t0Φ(d1) + (1− Φ(d2))
=

Φ(d1)

Φ(d1) + Φ(d1)
=

1

2
. (C.1)
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Appendix D. Sensitivity of wA,t with respect to PA/B,t|t0

The partial derivative of Φ(di) (i = 1, 2) with respect to PA/B,t|t0 is:

∂Φ(di)

∂PA/B,t|t0
= φ (di)

1

PA/B,t|t0σA−B
√
τ
≥ 0 . (D.1)

Then the partial derivative of wA,t with respect to PA/B,t|t0 is:

∂wA,t
∂PA/B,t|t0

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2 × [ (PA/B,t|t0Φ(d1) + (1− Φ(d2))

)(
Φ(d1)

+ PA/B,t|t0
∂Φ(d1)

∂PA/B,t|t0

)
− PA/B,t|t0Φ(d1)

(
Φ(d1) + PA/B,t|t0

∂Φ(d1)

∂PA/B,t|t0
− ∂Φ(d2)

∂PA/B,t|t0

)]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2 × [PA/B,t|t0Φ2(d1) + P 2
A/B,tΦ(d1)

∂Φ(d1)

∂PA/B,t|t0

+ (1− Φ(d2))Φ(d1) + PA/B,t|t0(1− Φ(d2))
∂Φ(d1)

∂PA/B,t|t0
− PA/B,t|t0Φ2(d1)

− P 2
A/B,tΦ(d1)

∂Φ(d1)

∂PA/B,t|t0
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂PA/B,t|t0

]

=
(1− Φ(d2))Φ(d1) + PA/B,t|t0(1− Φ(d2)) ∂Φ(d1)

∂PA/B,t|t0
+ PA/B,t|t0

∂Φ(d2)
∂PA/B,t|t0[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2

=
(1− Φ(d2))Φ(d1) + (1− Φ(d2))φ (d1) 1

σA−B
√
τ

+ φ (d2) 1
σA−B

√
τ[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2

=
(1− Φ(d2))Φ(d1) + 1

σA−B
√
τ

[(1− Φ(d2))φ (d1) + φ (d2)][
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2 . (D.2)

Expression (D.2) shows the non–negative relation between the relative price and the weight of the high–
risk asset in the MBo2 replicating portfolio. The higher the relative price, the higher its weight in the MBo2
replicating portfolio.

Appendix E. Sensitivity of wA,t with respect to σA

The partial derivative of Φ(d1) with respect to σA is:

∂Φ(d1)

∂σA
= φ (d1)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ
(
2σA − 2σBρA,B

)
+

1

2

√
τ
(
2σA − 2σBρA,B

) ]

= φ (d1)
√
τ
(
σA − σBρA,B

)(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
. (E.1)
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And the partial derivative of Φ(d2) with respect to σA is:

∂Φ(d2)

∂σA
= φ (d2)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ
(
2σA − 2σBρA,B

)
− 1

2

√
τ
(
2σA − 2σBρA,B

) ]
= −φ (d2)

√
τ
(
σA − σBρA,B

)(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)
. (E.2)

Then, the partial derivative of wA,t with respect to σA is:

∂wA,t
∂σA

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2[ (PA/B,t|t0Φ(d1) + (1− Φ(d2))

)
PA/B,t|t0

∂Φ(d1)

∂σA

− PA/B,t|t0Φ(d1)

(
PA/B,t|t0∂Φ(d1)

∂σA
− ∂Φ(d2)

∂σA

)]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂σA
+ (1− Φ(d2))PA/B,t|t0

∂Φ(d1)

∂σA

− P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂σA
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂σA

]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[(1− Φ(d2))PA/B,t|t0
∂Φ(d1)

∂σA
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂σA

]

=
PA/B,t|t0

√
τ
(
σA − σBρA,B

)[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2
×
[
(1− Φ(d2))φ(d1)

(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
− Φ(d1)φ(d2)

(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)]
. (E.3)

Appendix F. Sensitivity of wA,t with respect to σB

The partial derivative of Φ(d1) with respect to σB is:

∂Φ(d1)

∂σB
= φ (d1)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ
(
2σB − 2σAρA,B

)
+

1

2

√
τ
(
2σB − 2σAρA,B

) ]

= φ (d1)
√
τ
(
σB − σAρA,B

)(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
. (F.1)

And the partial derivative of Φ(d2) with respect to σB is:

∂Φ(d2)

∂σB
= φ (d2)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ
(
2σB − 2σAρA,B

)
− 1

2

√
τ
(
2σB − 2σAρA,B

) ]
= −φ (d2)

√
τ
(
σB − σAρA,B

)(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)
. (F.2)
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Then, the partial derivative of wA,t with respect to σB is:

∂wA,t
∂σB

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2[ (PA/B,t|t0Φ(d1) + (1− Φ(d2))

)
PA/B,t|t0

∂Φ(d1)

∂σA

− PA/B,t|t0Φ(d1)

(
PA/B,t|t0∂Φ(d1)

∂σA
− ∂Φ(d2)

∂σA

)]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂σB
+ (1− Φ(d2))PA/B,t|t0

∂Φ(d1)

∂σB

− P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂σB
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂σB

]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[(1− Φ(d2))PA/B,t|t0
∂Φ(d1)

∂σB
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂σB

]

=
PA/B,t|t0

√
τ
(
σB − σAρA,B

)[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2
×
[
(1− Φ(d2))φ(d1)

(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
− Φ(d1)φ(d2)

(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)]
.

(F.3)

Appendix G. Sensitivity of wA,t with respect to ρA,B

The partial derivative of Φ(d1) with respect to ρA,B is:

∂Φ(d1)

∂ρA,B
= φ (d1)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ (−2σAσB) +

1

2

√
τ (−2σAσB)

]

= φ (d1)
√
τσAσB

(
ln(PA/B,t|t0)

σ2
A−Bτ

− 1

)
.

(G.1)

And the partial derivative of Φ(d2) with respect to ρA,B is:

∂Φ(d2)

∂ρA,B
= φ (d2)

[
−

ln(PA/B,t|t0)

σ2
A−Bτ

1

2

√
τ (−2σAσB)− 1

2

√
τ (−2σAσB)

]

= φ (d2)
√
τσAσB

(
ln(PA/B,t|t0)

σ2
A−Bτ

+ 1

)
.

(G.2)
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Then we can rewrite the sensitivity of wA,t with respect to ρA,B as:

∂wA,t
∂ρA,B

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2[ (PA/B,t|t0Φ(d1) + 1− Φ(d2)

)
PA/B,t|t0

∂Φ(d1)

∂ρA,B

− PA/B,t|t0Φ(d1)

(
PA/B,t|t0∂Φ(d1)

∂ρA,B
− ∂Φ(d2)

∂ρA,B

)]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂ρA,B
+ (1− Φ(d2))PA/B,t|t0

∂Φ(d1)

∂ρA,B

− P 2
A/B,t|t0Φ(d1)

∂Φ(d1)

∂ρA,B
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂ρA,B

]
=

1[
PA/B,t|t0Φ(d1) + (1− Φ(d2))

]2[(1− Φ(d2))PA/B,t|t0
∂Φ(d1)

∂ρA,B
+ PA/B,t|t0Φ(d1)

∂Φ(d2)

∂ρA,B

]

=
PA/B,t|t0

√
τσAσB[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2

×

[
(1− Φ(d2))φ (d1)

(
ln(PA/B,t|t0)

σ2
A−Bτ

− 1

)
+ Φ(d1)φ (d2)

(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)]
.

(G.3)

Appendix H. Sensitivity of wA,t with respect to τ

The partial derivative of Φ(d1) with respect to τ is:

∂Φ(d1)

∂τ
= φ (d1)

[
−

ln(PA/B,t|t0)

2σA−B

√
(τ)3

+
1

2
σA−B

√
τ

]

= φ (d1)
1

2

√
τσA−B

(
1−

ln(PA/B,t|t0)

σ2
A−Bτ

)
.

(H.1)

And the partial derivative of Φ(d2) with respect to τ is:

∂Φ(d2)

∂τ
= φ (d2)

[
−

ln(PA/B,t|t0)

2σA−B

√
(τ)3

− 1

2
σA−B

√
τ

]

= −φ (d2)
1

2

√
τσA−B

(
1 +

ln(PA/B,t|t0)

σ2
A−Bτ

)
.

(H.2)

Then, the partial derivative of wA,t with respect to the time to maturity of the Margrabe option is:
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∂wA,t
∂τ

=
1[

PA/B,t|t0Φ(d1) + (1− Φ(d2))
]2[ (PA/B,t|t0Φ(d1) + (1− Φ(d2))

)
PA/B,t|t0

∂Φ(d1)

∂τ

− PA/B,t|t0Φ(d1)

(
PA/B,t|t0∂Φ(d1)

∂σA
− ∂Φ(d2)

∂τ

)]
=
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∂τ
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∂Φ(d1)

∂τ

− P 2
A/B,t|t0Φ(d1)
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∂τ
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∂τ
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(H.3)
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